

Wheel Operated Stainless Steel Diaphragm Gland Seal Cylinder Valves for Speciality Gases

Detailed Series Catalogue

BAAM as notified body: ID-0589

ISO 9001 & TPED certified valve manufacturer

	Page
1. Operating Principle & Identifying Features	2
2. Features & Benefits for Best-in-Class Performance	
Valve with Taper Inlet Connection	3.1
Valve with Parallel Inlet Connection	3.2
3. Material of Construction & Assembly Arrangement	4
4. Product Selection Guide	5
5. List of Approved Gases	6.1 - 6.2
6. Surface treatment of Stainless-Steel valve body	7

Operating Principle & Identifying Features

Series SSWN-32/V

Identifying features

SSWN-32/V is wheel operated design using a two-piece spindle separated by non-perforated diaphragms. The five diaphragms in series act as gland packing and prevent leakage around the valve spindle when the valve is in open condition. The replacement of elastomeric seals (as in O-ring seal design valves) with metal diaphragms gives the valve superior leak integrity to the atmosphere. There are no threads or lubricants in the gas stream to generate particles or contaminate the gas. The design prevents diaphragm inversion, and all this makes the design ideal for use with applications involving toxic, high purity, rare, pyrophoric, and even corrosive gases.

NOTE When working with SSWN-32/V, it is essential to use cylinder change-out procedures involving adequate purge and evacuation times to ensure the valve interior is properly cleaned.

The lower spindle is non-threaded, fitted with a soft seat and encased in a spring that forces it away from the seat when the valve is opened. The upper spindle is threaded into the diaphragm retaining gland nut. When the handwheel is rotated to the closed position, the upper spindle pushes on the diaphragms, which deflect downward, forcing the lower spindle against the valve seat. Opening the valve moves the upper spindle away from the diaphragms allowing the spring to push the lower spindle away from the seat and gas to flow.

It is essential to select suitable soft seat material for the intended application; otherwise, corrosion products can be produced. Corrosion products formed by these reactions can prevent normal valve operation and can embed in the elastomeric tip, preventing the valve from making a complete seal.

Recommended opening procedure

The handwheel rotates about two turns from fully open to close. When opening a diaphragm valve, the user will feel resistance for approximately one turn, at which point most resistance on the handwheel will disappear. At this point, the upper spindle would have lost contact with the diaphragms. The valve should be opened to this point and not back seated. When the handwheel is free from resistance, the valve will provide maximum flow but will not be mistaken for a closed valve as the free moving handwheel will also cause the upper spindle to rise.

Recommended closing procedure

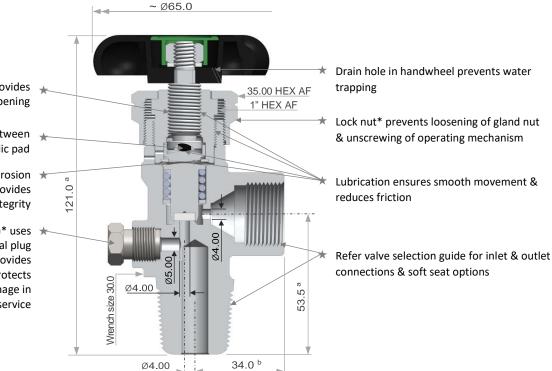
When the valve is open, full cylinder pressure is exerted on the diaphragms. The diaphragms have a surface area of about one square inch. The pressure on this large surface area makes it difficult to push the diaphragms down. When closing the valve against pressure, about 60% of the closing force goes toward overcoming the gas pressure, and the balance is transmitted to the seat. Therefore, when a pressurised diaphragm valve is closed to the recommended 7 Nm, and the valve outlet is depressurised, the closing force on the seat is only about 3 Nm. The valve may be either "weeping" through at this point or are just barely closed. Because of this effect, it is necessary to use a "double-close procedure" on these valves. So, we recommend the operator close the valve by hand to vent the pressure in the valve outlet and then retighten the valve immediately, commonly referred to as double-closing. Double closing ensures that the valve is not prone to accidental opening when exposed to vibration and shock.

Valve installation

Valving procedure & torque guidelines should be as per EN ISO 13341. For NGT threads, we recommend hand tight + 3 turns wrench tight to install the valve in the cylinders. (*Refer* <u>https://teknovalves.com/Information Center</u>)

Recommended filling procedure

The cylinder valve must be fully opened before commencing filling considering valve will NOT OPEN if it is already pressurised from outlet connection.


ACAUTION

- 1. NEVER use wrenches or other persuaders to operate the valve.
- 2. Valving tools (e.g. sockets or jaws) used to screw the valve into the cylinder must only make contact with the flats provided in the valve body & not touching any part of the PRD, if provided. The tools should fit the valve properly without causing damage.
- 3. Valves should not be over-torqued into the cylinder as it causes high stresses in the cylinder neck, leading to overload failures, especially in parallel thread valves.
- 4. Proper connectors should be used for filling & discharge, ensuring contact only at the intended sealing surface.
- 5. It is advised not to carry out repair and maintenance on the valves.

Features & Benefits for Best-in-Class Performance

Series SSWN-32/V with Taper Inlet Connection

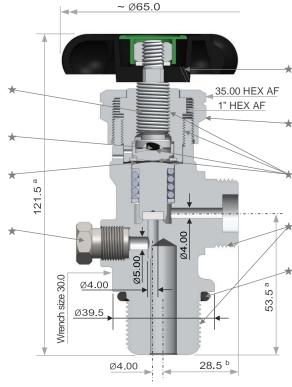
- Fine pitch of the upper spindle provides gradual opening
- Moly filled nylon reduces friction between rotating upper spindle & thrust metallic pad
 - Lower Inconel diaphragm for corrosion resistance. Diaphragm sealing provides higher leak integrity
- Pressure relief device (PRD)* uses corrosion resistant Nickel disc. Internal plug capsule design using SS gasket provides secure sealing with valve body & protects the PRD from loosening or damage in service

Dimensions are in mm

- Dimensions shown are for 25E inlet & BS-3 outlet
- a Depends upon inlet connection
- b Depends upon outlet connection
- * Optional

MAX Pressure Rating & Lubricant Detail				
	Metric	English		
Working [#] /Service pressure	200 bar	3000 psig		
Test pressure (used for type & production testing)	250 bar	3600 psig		
Proof pressure test	415 bar	6000 psig		
Hydraulic burst pressure test	675 bar	9790 psig		
Lubricant (only used in non-wetted parts)	Klubertemp GR M30			

As per ISO 10297, the term working pressure is only applicable for compressed gases


Design Specifications							
Metric English							
Minimum life	2000 cycles						
Operating temperature range	–20 °C to +65 °C -4 °F to +149 °F						
Storage temperature range	-40 °C to +65 °C -40 °F to +149 °F						
Pressure relief device (PRD)	CG-1 / CG-4 / CG-5						
Minimum closing torque	7 Nm 5.2 ft.lb						
Gland nut installation torque	95 Nm	70 ft.lb					
PRD installation torque	35-40 Nm	26-30 ft.lb					
Flow coefficient (C _v)	0.30						

Testing & Certification

- Valves meet EN ISO 10297:2017 & CGA V-9:2019
- Valves are certified by BAM to European Transportable Pressure Equipment Directive (TPED) & available with Π mark
- PRD complies with CGA S-1.1

Series SSWN-32/V with Parallel Inlet Connection

- Drain hole in handwheel prevents water trapping
- Lock nut* prevents loosening of gland nut & unscrewing of operating mechanism

Lubrication ensures smooth movement & reduces friction

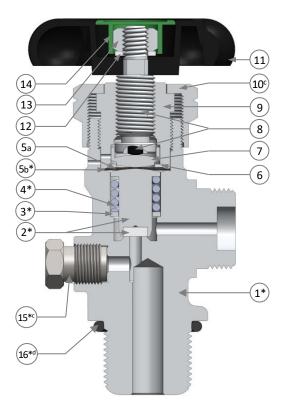
Refer valve selection guide for inlet & outlet connections & soft seat options

PTFE / NBR O-ring facilitates leak proof connection with cylinder neck

- Fine pitch of the top spindle provides gradual opening
- Moly filled nylon reduces friction between rotating top spindle & thrust metallic pad
 - Lower Inconel diaphragm for corrosion resistance. Diaphragm sealing provides higher leak integrity
- Pressure relief device (PRD)* uses corrosion resistant Nickel disc. Internal plug capsule design using SS gasket provides secure sealing with valve body & protects the PRD from loosening or damage in service
- Dimensions are in mm
- Dimensions shown are for 1.125"-12UNF-2A inlet & CGA 660 outlet
- Depends upon inlet connection
- b Depends upon outlet connection
- Optional

MAX Pressure Rating & Lubricant Detail				
	Metric	English		
Working [#] /Service pressure	200 bar	3000 psig		
Test pressure (used for type & production testing) 250 bar 3600 psig				
Proof pressure test	415 bar	6000 psig		
Hydraulic burst pressure test	675 bar	9790 psig		
Lubricant (only used in non-wetted parts)	Klubertemp GR M30			

As per ISO 10297, the term working pressure is only applicable for compressed gases

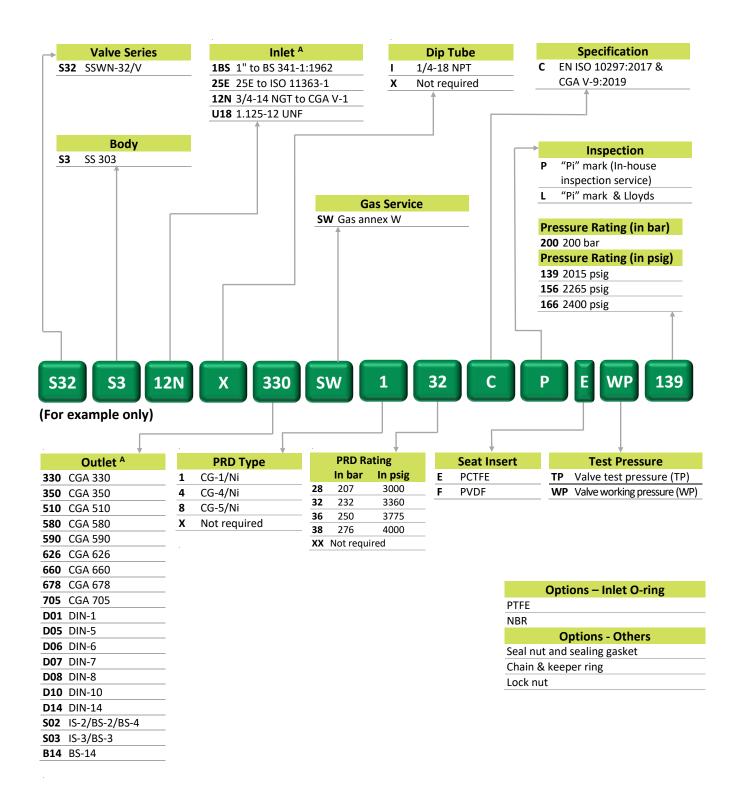

Design Specifications						
	Metric English					
Minimum life	2000 cycles					
Operating temperature range	–20 °C to +65 °C -4 °F to +149 °F					
Storage temperature range	-40 °C to +65 °C -40 °F to +149 °F					
Pressure relief device (PRD)	CG-1 / CG-4 / CG-5					
Minimum closing torque	7 Nm 5.2 ft.lb					
Gland nut installation torque	95 Nm	70 ft.lb				
PRD installation torque	35-40 Nm	26-30 ft.lb				
Flow coefficient (C _v)	0.30					

Testing & Certification

- Valves meet EN ISO 10297:2017 & CGA V-9:2019
- Valves are certified by BAM to European Transportable Pressure Equipment Directive (TPED) & available with Π mark
- PRD complies with CGA S-1.1

Series SSWN-32/V

Part List					
Part No.	Description	No. off	Material		
1*	Valve body	1	SS 303		
2*	Lower spindle assembly	1	SS 303 with PVDF/PCTFE seat insert		
3*	Washer	1	SS 303		
4*	Spring	1	SS 302		
5a	Upper diaphragm	4	SS 301		
5b*	Lower diaphragm	1	Inconel [®] 625		
6	Washer	1	PA 66		
7	Thrust metallic pad	1	SS 303		
8	Upper spindle assembly	1	SS 303 with moly filled nylon tip		
9	Gland nut	1	SS 303		
10 ^c	Lock nut	1	SS 303		
11	Handwheel	1	Aluminium (CED coated)		
12	Plain washer	1	SS 303		
13	Handwheel retaining nut	1	SS 303		
14	Handwheel cover	1	PA 6		
15* ^c	PRD assembly	1	SS 303 retainer plug with nickel bursting disc & SS alloy sealing gasket		
16* ^d	Inlet O-ring	1	PTFE/NBR		


* Gas wetted parts

^c Optional

^{*d*} For parallel inlet connection only

Product Selection Guide – Valve Item Code Matrix

Series SSWN-32/V

A - Other inlet, outlet & dip tube connections are available as per customer requirement

List of Approved Gases

Gas Annex – W

SI.			Chemical	Condition	Soft sea	Soft seat options		ng options
No.	UN No.	Name of gas ^a	formula	Condition	PVDF	PCTFE	PTFE	NBR
1	1001	Acetylene	C_2H_2	-	~	✓	✓	х
2	1005	Ammonia	NH₃	А	Х	✓	~	Х
3	1006	Argon	Ar	-	~	✓	~	~
4	2188	Arsine ^c	AsH₃	-	 ✓ 	✓	✓	✓
5	1741	Boron trichloride	BCl ₃	А	~	✓	~	Х
6	1008	Boron trifluoride	BF3	А	~	✓	~	Х
7	1974	Bromochlorodifluoromethane	CBrClF ₂	А	~	✓	~	Х
8	2419	Bromotrifluoroethylene	C ₂ BrF ₃	А	~	✓	~	Х
9	1009	Bromotrifluoromethane	CBrF₃	А	✓	✓	~	✓
10	1011	Butane	C4H10	А	~	✓	~	~
11	1016	Carbon monoxide ^b	СО	AA	✓	✓	✓	✓
12	2204	Carbonyl sulfide	COS	AA	✓	✓	✓	Х
13	1018	Chlorodifluoromethane	CHCIF ₂	А	 ✓ 	✓	✓	X
14	1020	Chloropentafluoroethane	C ₂ CIF ₅	А	 ✓ 	✓	✓	✓
15	1022	Chlorotrifluoromethane	CCIF ₃	А	 ✓ 	✓	✓	✓
16	1026	Cyanogen	C ₂ N ₂	А	✓	✓	✓	Х
17	1027	Cyclopropane	C ₃ H ₆	-	 ✓ 	✓	 ✓ 	✓
18	1957	Deuterium ^c	D	-	 ✓ 	✓	 ✓ 	✓
19	1941	Dibromodifluoromethane	CBr ₂ F ₂	Α	✓	√	✓	X
20	1028	Dichlorodifluoromethane	CCIF ₂	А	✓	√	✓	✓
21	1029	Dichlorofluoromethane	CHCl ₂ F	A	✓	√	✓	X
22	2189	Dichlorosilane	SiH ₂ Cl ₂	Α	✓	√	✓	X
23	1032	Dimethylamine	C ₂ H ₇ N	Α	Х	√	✓	X
24	1033	Dimethylether	C ₂ H ₆ O	-	✓	✓	✓	X
25	1035	Ethane	C ₂ H ₆	A	✓	✓	✓	✓
26	1962	Ethylene	C ₂ H ₄	Α	✓	✓	✓	✓
27	1040	Ethylene Oxide	C ₂ H ₄ O	A	✓	✓	✓	X
28	1037	Ethyl chloride	C₂H₅Cl	A	✓	✓	✓	✓
29	2192	Germane ^c	GeH₄	-	✓	✓	✓	✓
30	1046	Helium	Не	-	✓	✓	✓	✓
31	2193	Hexafluoroethane	C ₂ F ₆	Α	✓	✓	✓	X
32	1049	Hydrogen ^b	H ₂	Α	✓	✓	✓	✓
33	1051	Hydrogen cyanide	HCN	А	✓	√	✓	Х
34	1969	Isobutane	C ₄ H ₁₀	А	✓	✓	✓	✓
35	1055	Isobutylene	C ₄ H ₈	А	✓	✓	✓	✓
36	1056	Krypton	Kr	-	✓	√	✓	✓
37	1971	Methane	CH ₄	A	✓	✓	✓	✓
38	1062	Methyl bromide	CH₃Br	A	✓	✓	✓	X
39	1064	Methyl mercaptan ^c	CH ₄ S	A	✓	✓	✓	х
40	1061	Methylamine	CH₅N	А	X	✓	✓	X
41	1063	Methyl chloride	CH₃CI	A	✓	✓	✓	X
42	1036	Monoethylamine	C ₂ H ₇ N	А	✓	✓	✓	X
43	1065	Neon	Ne	-	✓	✓	✓	✓
44	1660	Nitric Oxide	NO	А	X	✓	✓	X
45	1066	Nitrogen	N ₂	-	✓	✓	✓	✓
46	1067	Nitrogen dioxide	NO ₂	Α	X	✓	✓	X
47	2451	Nitrogen trifluoride ^c	NF3	A	✓	✓	✓	X

List of Approved Gases

Gas Annex - W

SI.			Chemical		Soft seat options		Soft seat options		Inlet O-ring options		
No.	UN No.	Name of gas ^a	formula	Condition	PVDF	PCTFE	PTFE	NBR			
48	1976	Octafluorocyclobutane	C ₄ F ₈	А	✓	✓	~	✓			
49	2424	Octafluoropropane	C ₃ F ₈	А	✓	✓	~	✓			
50	1072	Oxygen	O ₂	А	Х	✓	~	Х			
51	1076	Phosgene	COCl ₂	А	Х	✓	~	✓			
52	2199	Phosphine ^c	PH ₃	-	✓	✓	~	✓			
53	2200	Propadiene	C ₃ H ₄	А	✓	✓	~	Х			
54	1978	Propane	C ₃ H ₈	А	✓	✓	1	✓			
55	1077	Propylene	C ₃ H ₆	А	✓	✓	~	Х			
56	1280	Propylene oxide	C ₃ H ₆ O	А	Х	✓	~	Х			
57	2203	Silane ^c	SiH₄	А	✓	✓	~	-			
58	1859	Silicon tetrafluoride	SiF4	А	✓	✓	~	Х			
59	2418	Sulphur tetrafluoride	SF4	А	✓	✓	~	✓			
60	1079	Sulphur dioxide	SO ₂	А	✓	✓	~	Х			
61	1080	Sulphur hexafluoride	SF ₆	-	✓	✓	~	✓			
62	1081	Tetrafluoroethylene	C ₂ F ₄	-	✓	✓	~	✓			
63	1982	Tetrafluoromethane	CF4	А	✓	✓	~	Х			
64	1295	Trichlorosilane ^c	SiHCl₃	А	✓	✓	~	Х			
65	1082	Trifluorochloroethylene	C ₂ ClF ₃	А	✓	✓	~	-			
66	1984	Trifluoromethane	CHF₃	A	✓	✓	1	Х			
67	1085	Vinyl bromide	C ₂ H ₃ Br	А	✓	✓	~	Х			
68	1086	Vinyl chloride	C ₂ H ₃ Cl	А	✓	✓	~	Х			
69	1860	Vinyl fluoride	C ₂ H ₃ F	А	✓	✓	~	Х			
70	2036	Xenon	Хе	-	✓	✓	~	√			
71	2035	1, 1, 1-trifluoroethane	$C_2H_3F_3$	А	✓	✓	~	Х			
72	1030	1, 1-difluoroethane	$C_2H_4F_2$	А	✓	✓	~	√			
73	1959	1, 1-difluoroethylene	$C_2H_2F_2$	А	✓	✓	~	√			
74		1,2-butadiene				~	~				
75	1010	1010 C ₄ H ₆ C ₄ H ₆	C4H6	A	~			Х			
76		1,1,1-trichlorotrifluoroethane		A		× ×	~	,			
77	3082	1,1,2-trichlorotrifluoroethane	C ₂ Cl ₃ F ₃		✓			✓			
78	-	1,2-dibromotetrafluoroethane	C ₂ Br ₂ F ₄	А	✓	✓	~	Х			
79		1,1-dichlorotetrafluoroethane			,		,	,			
80	1958	1,2-dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄	A	~	√	~	✓			
81	3161	1-chloro-1, 1-difluoroethane	C ₂ H ₃ CIF ₂	А	✓	✓	✓	✓			

a - Valve may also be used for mixtures of the listed gases.

b - Valves for carbon monoxide & hydrogen service / their gas mixture shall not be equipped with PRD.

c – Refer BAM approved gas Annex for specific risks.

A - Anhydrous (water content <100 ppm)

AA - Anhydrous (water content <5 ppm)

Surface Treatment of Stainless-Steel Valve Body - Why, How & What

Series SSWN-32/V

Stainless steel valves are often used in corrosive environment for high purity application. The surface finish of valve body after forging and solution annealing thus becomes a critical design element to ensure corrosion resistance and aesthetics. The desired finish is achieved by subjecting valve body to the following surface treatments.

Sand Blasting

Sand blasting is carried out to clean the surface and remove heavy build-up of oxide scaling by forcing sand across the surface at high-speed using compressed air.

Electropolishing

Electropolishing, (considered as the reverse of electroplating), is carried out to remove free iron and contamination from the surface by

passing an electric current by submerging the valve body forging in an electrolyte. Electropolishing reduces roughness by levelling micro-peaks and valleys and brightens the surface.

Further the preferential removal of free iron from the surface enhances chrome /nickel content and makes it resistant to atmospheric corrosion and surface degradation.

chlorinated hydrocarbon to remove oil, grease and particulate matter.

Notes
Sec. 1
, dN
Dan Let your

Your safety is valued

Your safety is valued

Tekno Valves

Natun Rasta, Bilkanda, 24 Parganas (N), Kolkata INDIA +91 33 25956767 www.teknovalves.com

International Distributors

USA & CANADA

Tekno Valves North America, Inc. +1 (225) 330 - 6590 www.tvnainc.com

EUROPE

GBP Gas Business Partner GmbH +49 (0)6468-917 99 52 www.gas-business-partner.com

Copying or extraction from this catalogue shall not be done without Tekno Valves' permission, since content may include proprietary information

Last updated: 18th July 2023 *P. Halder*